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Abstract

Biological action and activity reflect an aspect of the fundamental physicochemical properties of the bioactive compounds. As an alternative
to classical QSAR studies, in this work different quantitative retention–activity relationships (QRAR) models are proposed, which are able
to describe the role of hydrophobicity on the binding affinity to different brain monoamine receptors (H1-histamine,�1-noradrenergic and
5-HT2-serotonergic) of different families of psychotherapeutic drugs. The retention of compounds is measured in a biopartitioning micellar
chromatography (BMC) system using Brij-35 mobile phases. The adequacy of the QRAR models developed is due to the fact that both the
retention of compounds in BMC and the drug–receptor interaction are described by the same hydrophobic, electronic and steric properties
of compounds. The obtained results indicate that, for structurally related compounds that present the same molecular features as the basic
pharmacophore, there is a retention range in which compounds present the highest affinity to all of monoamine receptors.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

A drug’s mechanism of action is due to the interaction
between the drug molecule and the molecules composing
the biological target. The effects of biologically active com-
pounds can be explained on basis of molecular interactions
in terms of molecular structures or physicochemical proper-
ties of the molecules involved.

Ligand–receptor binding is usually reversible, and may
be due to different types of forces between drug molecules
and their receptors: electrostatic attraction, Van der Waals
and hydrophobic forces. Among the interactions, the ion–ion
type is the most important to many drugs at physiological
pH where functional groups of the drug molecule may be
ionized. The energy associated with this binding is about
17–33 kJ/mol. The importance of hydrophobic binding is
due to the entropic changes observed when an interaction be-
tween the non-polar moieties of the molecules involved takes
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place. The energy associated to this binding is of 2.9 kJ/mol
every –CH2– group and 8.4 kJ/mol every benzene ring. Sum-
marizing, the drug–receptor binding energy has an enthalpy
component that includes the electronic and Van der Waals
forces and an entropy one, may be the most important, asso-
ciated with hydrophobic interactions due to changes in the
molecular degrees of freedom.

Steric effects are also important in the drug–receptor
complex formation. The differences in biological activity
between optical isomers are dependent on their ability to
selectively react with a biological system, which is highly
conditioned by the molecule geometry and configuration.

Compounds acting on the same receptor must be comple-
mentary to this receptor, which implies that they are struc-
tural and chemically related. However, there is still a certain
degree of freedom for structural variation among compounds
interacting with common receptors. For such drugs particu-
lar relationships may be found for structure and action[1].

These structure–activity relationships have been pro-
posed by modern medicinal chemistry as an alternative to
“in vivo” measurements. The usual physicochemical pa-
rameter employed in QSAR studies is the octanol–water
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partition coefficient (logP). In some cases, the steric factor
and/or electronic effects are also important to describe the
biological behavior of drugs.

The dynamic pharmacokinetic/pharmacodynamic pro-
cesses of drug action are considered to have much in
common with the processes on which chromatographic
separations are based. The same molecular features (hy-
drophobicity, electrical charge and steric effects) affect not
only transport processes and drug–biological target inter-
actions, but also the compound retention in a chromato-
graphic system under specific experimental conditions. The
application of chromatographic parameters to quantitative
structure–activity relationships has allowed the development
of quantitative retention–activity relationships (QRAR)
[2–5]. This approach that uses an unique parameter as inde-
pendent variable may be an alternative to QSAR models in
order to obtain an estimation or, at least, useful qualitative
information about drug activity.

In this setting, our research group has demonstrated that
the chromatographic system comprising a hydrophobic sta-
tionary phase and saline solutions of Brij-35 micelles as mo-
bile phase can be used as a system to model drug biopar-
titioning [6–8]. We have named this methodology biopar-
titioning micellar chromatography (BMC). The success of
QRAR models based on BMC could be attributed to the sim-
ilarities between BMC systems and biological barriers and
extracellular fluids[9–11]. This methodology has been ap-
plied for describing and predicting the biological activity of
different pharmacological kinds of drugs[12], permeability
across the intestinal barriers, blood–brain barrier and cornea
[13].

From the beginning of psychopharmacology in 1950,
when chlorpromazine was synthesized, the participation of
biogenic amines and their corresponding CNS receptors in
mental diseases was established. Receptor binding proper-
ties of drugs are determined by radioligand binding tech-
niques using animal tissue (mainly rat brain) as the source
of receptors. The therapeutic action of CNS drugs is related
to their ability to modify the affinity of biological targets
to their corresponding ligand (neurotransmitter). But CNS
drugs also act at level of other different receptors, which is
responsible for the adverse effects of drugs (although some
of them can be used for therapeutically purposes) as well as
their interactions with other drugs[14]. Taking into account
these points it can be concluded that precise estimation of
the binding constant of a ligand to one receptor allows one
to obtain information about the relative potency of a partic-
ular compound and its possible undesirable consequences
derived from it use. This fact is an important aspect of
structure-based drug design.

In this paper, QRAR models for evaluating the role
of hydrophobicity on binding affinities of CNS drugs to
H1-histaminic, �1-adrenergic and 5-HT2 serotonergic re-
ceptors are proposed. The drugs considered belong to one
of the following groups: neuroleptics, tricyclic antidepres-
sants and H1-antihistamines. All of them are structurally

related compounds that possess a special stereochemical
and electronic feature: the aromatic ring and the nitrogen
moieties, which are the primary binding groups to the re-
ceptors involved in this work. It is necessary to remark
that the QRAR models developed comprise all those com-
pounds with a proved therapeutic activity. Thus, in order to
obtain meaningful estimates, the structural features of the
new drug, including stereospecific ones (when required),
must be represented in the original database from which
the models were developed, i.e. interpolation within fami-
lies of molecules is possible but extrapolation to a distant
chemotype in not reliable.

2. Experimental

2.1. Instruments and measurements

The retention of the CNS drugs was measured using
a Hewlett-Packard 1100 chromatograph comprised of an
isocratic pump, a Rheodyne valve with a 20�l loop; (Co-
tati, CA), thermostat, variable wavelength UV absorbance
detector operated at 220 nm (tricyclic antidepressants and
butyrophenones), 240 nm (antihistamines) or 254 nm (phe-
nothiazines) and reversed-phase columns packed with 5�m
kromasil octadecyl silane, C18 (50 mm× 4.6 mm, i.d.). The
mobile phase was pumped at a flow-rate of 1.5�l/min (anti-
histamines) or 1�l/min (rest of compounds). Data acquisi-
tion and processing were performed on an HP-Chemstation
software (A0402, 1996).

All the assays were carried out at 36.5◦C. The retention
factor, k, values were averages of the triplicate determina-
tions. The relative standard deviations of logk values ranged
between 0.1 and 0.9%.

2.2. Chemicals

The micellar mobile phases were prepared from
polyoxy-ethylene-23 lauryl ether, Brij-35 (Acros Chimica,
Geel, Belgium) at concentrations of 0.02, 0.04 and 0.06 M
buffered at pH 7.4 with 0.05 M phosphate buffer (analytical
reagent, Panreac, Barcelona, Spain). In order to repro-
duce the osmotic pressure of biological fluids, 9.2 g/l NaCl
(purissim, Panreac) was added to the mobile phases. They
solutions were filtered through a nylon membrane filter
(0.45�m; Micron Separations, Westboro, MA) before use.

The CNS drugs were obtained from Spanish commer-
cial pharmaceutical preparations (amitriptyline,Trypti-
zol, Merck Sharp and Dhome, Madrid; amoxapine,De-
molox, Lederle, Madrid; clomipramine,Anafranil, Geigy,
Barcelona; dothiepin,Prothiaden, Alter, Madrid; doxepin,
Sinequan, Pfizer, Madrid; imipramine,Tofranil, Novartis,
Barcelona; loxapine,Desconex, Alonga, Madrid; mapro-
tiline, Ludiomil, Novartis; mianserin,Lantanon,Organon,
Barcelona; trimipramine,Surmontil, Rhone-Poulenc Rorer,
Madrid; chlorpromazine,Largactil, Rhone-Poulenc Rorer;
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clozapine,Leponex, Sandoz-Pharma, Barcelona; thioprop-
erazine,Majeptil, Rhone-Poulenc Rorer) or purchased from
Sigma–Aldrich s.a. (Madrid, Spain) (chlorpheniramine,
brompheniramine, doxylamine, chloropyramine, clemastine,
antazoline, carbinoxamine, chlorcyclizine, cinnarizine, ke-
totifen, methapyrilene, orphenadrine, pyrilamine, prometh-
azine, cyclizine, triprolidine) and Guinama (Valencia, Spain)
(hydroxyzine, tripelennamine, cyproheptadine and diphen-
hydramine). Some of them were kindly donated by different
laboratories: dimethindene (Novartis, Nyon, Switzerland)
nortriptyline (Lilly, Madrid, Spain), perphenazine (Merck
s.a., Barcelona, Spain) and the butyrophenones used (ben-
peridol, bromperidol, droperidol, fluanisone, haloperidol,
penfluridol, pipamperone) (Janssen-Pharma).

Stock solutions of tricyclic antidepressants and phe-
nothiazines were prepared in micellar solutions of 0.04 M
Brij-35. Stock solutions of butyrophenones and antihis-
tamines were prepared using methanol as solvent. Working
solutions were prepared by dilution of the stock solutions
using mobile phase. The solutions were injected into the
chromatographic system after filtering through 0.22�m
nylon membranes (Micron Separations, Westboro, MA).
Barnstead E-pure deionized water (Sybron, Boston, MA)
was used throughout.

2.3. Software, data processing and evaluation of the QRAR
models predictive ability

Excel 7.0 from Microsoft Office software was used to
perform the statistical analysis of the regressions. To evaluate
the adequacy of the models, the fit error (root-mean-square
error of calibration, RMSEC), the prediction error based on
cross-validation (root-mean-square error of cross-validation,
RMSECV), parameter that includes both interpolation and
extrapolation information[15], and the RMSECVi[16] for
measuring only interpolation information, were compared.

3. Results and discussion

The retention of the compounds included inTable 1,
was measured using 0.02, 0.04 and 0.06 M Brij-35 mobile
phases. The pH was adjusted to 7.4 to obtain experimen-
tal conditions as close as possible to physiological ones.
All the CNS drugs studied (Fig. 1) are tertiary or sec-
ondary amines, include policyclic structures, and the molec-
ular masses range between 225 g/mol (diphenhydramine)
and 523.97 g/mol (penfluridol). These compounds are highly
hydrophobic, and at physiological pH they most are pos-
itively charged (excepting of dimetindene, loxapine, mi-
anserin and trimipramine which are mostly in their un-
charged form).

As we commented previously, all of the compounds con-
sidered in this work have been demonstrated to show the
binding affinities studied, which implies that all of them
present the required structural and stereochemical features

Table 1
Logarithm of octanol–water partition coefficient and dissociation constants
(pKa) values of the psychotherapeutic drugs studied

CNS drug logP pKa

Antidepressants
Amitriptyline 4.64 9.42
Amoxapine 3.89 7.6
Clomipramine 5.19 9.38
Desipramine 3.97 10.44
Doxepine 3.88 9.0
Imipramine 4.53 9.5
Loxapine 4.75 6.6
Maprotiline 4.22 10.5
Mianserine 4.26 7.1
Nortriptyline 4.32 9.7
Trimipramine 4.73 6.77a

Phenothiazines
Chlorpromazine 5.20 9.30
Chlorprothixene 5.30 7.60
Clozapine 4.27 8.0
Fluphenazine 5.90 3.9; 8.1
Perphenazine 5.57 7.8
Pimozide 6.30 7.3; 8.6
Prochlorperazine 6.15 3.78; 8.1
Trifluoperazine 6.48 8.1
Trimeprazine 4.59 9.0
Thioridazine 6.42 9.50
Thiothixene 4.80 7.67; 7.9

Antihistamines
Antazoline 4.25 2.5; 10.1
Brompheniramine 2.88 9.79
Carbinoxamine 2.17 8.10
Chlorcyclizine 4.68 2.12; 8.15
Chlorpheniramine 2.73 9.16
Cyproheptadine 4.92 8.87
Diphenhidramine 3.36 9.00
Dimethindene 3.42 6.58a

Ketotifen 3.56 8.24
Methapyrilene 2.50 3.7; 8.90
Oxatomide 5.42 8.00
Phenindamine 3.74 8.30
Promethazine 4.65 9.10
Pyrilamine 2.77 4.02; 8.92
Tripelennamine 2.85 4.2; 8.71
Triprolidine 3.47 6.50; 9.5

Butyrophenones
Benperidol 3.91 4.17
Bromperidol 3.95 8.65
Droperidol 3.5 7.6
Fluanisone 3.02 –
Haloperidol 3.52 8.3
Penfluridol 6.98 –
Pipamperone 1.84 8.28

a Measured potentiometrically in Brij35 medium.

that allow them to bind a certain receptor. The molecular fea-
tures hydrophobicity, total charge and steric properties affect
not only the drug–receptor interaction, but also drug reten-
tion in the BMC system. Most of the compounds considered
in this paper are positively charged, thus the differences ob-
served between the compounds’ retention can be explained
in terms of hydrophobicity and, to a lesser extent, steric
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contributions.[17]. Taking into account all these considera-
tions, relationships between binding affinities and BMC re-
tention can be mainly explained in terms of hydrophobicity.

Moreover, it is important to make a few points about the
QRAR models developed. The micellar media used cannot
distinguish between enantiomers and/or diastereoisomers;

Fig. 1. Chemical structures of the psychotherapeutic drugs considered.

then, for a specific compound, all the corresponding optical
isomers are going to present the same retention. Therefore,
we are going to assign the retention data obtained to the
active form of the compound.

Table 2shows the BMC retention data of the available
CNS drugs, logk, and their corresponding binding affinities
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Fig. 1. (Continued).
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Fig. 1. (Continued).
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Fig. 1. (Continued).
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Table 2
Retention data in Brij-35 and monoamine receptor binding affinity values reported in literature of the psychotherapeutic drugs used in QRAR models
development

CNS drug Retention data (logk) Binding constant (nM)

0.02 M 0.04 M 0.06 M H1 �1 5-HT2 (rat) 5-HT2

(human)

Antidepressants
Amitriptyline 2.25 1.84 1.76 4.1[18] 24 [20], 21 [21] 4.2 [24], 6.2 [25] 29 [29]
Amoxapine 2.03 1.63 1.53 – – – 0.6[29]
Clomipramine 2.31 1.89 1.79 33[19] – – 27 [29]
Desipramine 1.80 1.42 1.35 250[18] 148 [22] 78 [24] 280 [29]
Doxepine 2.10 1.69 1.55 0.7[18] 23 [22] – 25 [29]
Imipramine 2.22 1.80 1.67 26[18] 58 [22], 51 [21] 37 [24] 80 [29]
Loxapine 2.26 1.86 1.75 – – 2[26] 1.7 [28]
Maprotiline 1.79 1.47 1.35 – – – 120[29]
Mianserine 2.20 1.87 1.76 3[19] – 1.4 [24] 7 [29]
Nortriptyline 1.87 1.52 1.40 46[18] 71 [22] – –
Trimipramine 2.26 1.86 1.75 – – 19.4[27] 32 [29]

Antihistamines
Antazoline 1.35 1.04 0.94 610[18] – – –
Brompheniramine 2.19 1.88 1.86 4.7[18] – – –
Carbinoxamine 1.93 1.80 1.66 2.3[18] – – –
Chlorcyclizine 2.48 2.07 1.88 9[18] – – –
Chlorpheniramine 2.06 1.77 1.77 8[18] – – –
Cyproheptadine 2.47 2.08 1.88 3.1[18] – 0.44[24] –
Diphenhidramine 1.95 1.73 1.61 17[18] – – –
Dimethindene 2.24 1.94 1.85 8[18] – – –
Ketotifen 1.97 1.59 1.50 – – 17[24] –
Methapyrilene 1.86 1.69 1.48 4.5[18] – – –
Oxatomide 2.10 1.82 1.57 – – 2.9[25] –
Phenindamine 2.33 1.95 1.79 20[18] – – –
Promethazine 2.25 1.88 1.75 2.9[18] 55[21] – –
Pyrilamine 1.94 1.59 1.57 4.5[18] – – –
Tripelennamine 1.99 1.61 1.56 35[18] – – –
Triprolidine 2.30 2.05 2.03 5.6[18] – – –

Phenothiazines
Chlorpromazine 2.42 2.18 1.92 28[21], 36 [18] 4.3 [20], 6 [21], 5.2 [23] 3.3 [24], 2 [26] 1.4 [28]
Chlorprothixene 2.53 2.21 1.99 – – – 0.4[28]
Clozapine 2.45 2.13 1.94 20[20] 17 [20], 17 [23] 2.6 [24], 3.4 [25], 5 [26] 1.6 [28]
Fluphenazine 2.07 1.78 1.53 58[20], 67 [18] 13 [20], 9.9 [23] 2.8 [25], 2.5 [26] 19 [28]
Perphenazine 1.98 1.67 1.40 – 7.4[23] 5.6 [28]
Pimozide 2.54 2.19 2.01 – 20[20], 18 [23] 5.9 [24], 8 [26] –
Prochlorperazine 2.51 2.31 2.00 – – 6.3[26] 15 [28]
Thioridazine 2.40 2.17 1.85 25[20], 20 [18] 6.05 [20], 5.4 [23], 5.1 [21] 6.3 [26] 22 [28]
Thiothixene 1.97 1.76 1.42 37[20], 27 [18] 11 [20] – –
Trifluoperazine 2.42 2.33 2.04 135[20], 182 [18] 55.5 [20], 46 [23], 44 [21] 4 [26] 14 [28]
Trimeprazine 2.26 1.92 1.73 1.3[18] – – –

Butyrophenones
Benperidol 1.84 1.64 1.49 – – – –
Bromperidol 2.26 1.93 1.84 – – – –
Droperidol 1.97 1.67 1.54 – – – –
Fluanisone 1.49 1.50 1.39 150[20] – – –
Haloperidol 2.12 1.89 1.65 – – – –
Penfluridol 2.55 2.30 2.12 – – – –
Pipamperone 1.42 1.28 1.09 450[20] – – –

to H1 (histaminic) �1 (noradrenergic) and 5-HT2 (sero-
tonergic) receptors found in bibliography[18–29]. The
binding affinities are expressed as the radioligand binding
inhibition constant,Ki , and evaluated as the drug concen-
tration that produces a certain degree of inhibition of the

specific radioligand binding. In this case, all of the drugs
studied present antagonist activity. When two or more data
sources for the same compound were available, the median
value to construct the corresponding QRAR model was
used.
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3.1. Retention-binding affinity on H1-histamine receptor
relationships

The antihistamine [3H]-mepyramine binds to H1 receptors
in mammalian brain membranes and it is used to evaluate the
affinity to the H1-receptor of the CNS drugs. This binding is
saturable with a density of 10 pmol per gram of whole brain
and has a dissociation constant of about 4 nM.

For many years, the most active histamine H1-receptor an-
tagonists have been represented by a general formula com-
prising two aromatic groups linked by a short chain of atoms
to a secondary or tertiary amino group. The two aryl groups
may be bridged to form tricyclic derivatives. A simpler de-
scription suggests that the most active antihistamines have
an intramolecular distance of 5–6 Å between the side chain
ammonium nitrogen and the center of one of the aromatic
rings, but this is probably not exclusive[30]. It has been
demonstrated that not only classical antihistamines, but also
many other compounds of diverse chemical structures are
potent histamine H1-receptor antagonists. The most potent
antagonists are certain tricyclic antidepressants (i.e. doxepin
and amitriptyline[18]) and phenothiazine neuroleptics. Ex-
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Fig. 2. (a) H1-receptor binding affinity vs. logk (I) and k (II) relationships. (b) Validation plots for exponential QRAR model: predicted vs. actual values.
Fitted (O) and cross-validated (+) results are shown.

cepting fluanisone and pipamperone, which are relatively ef-
ficient in the displacement of [3H]-mepyramine from the his-
tamine receptor[20], butyrophenones are extremely weak as
H1-receptor antagonists due to the lack of chemical resem-
blance to the described H1-antagonist basic pharmacophore.

Quantitative structure–activity studies have been carried
out to describe H1 antagonist activity, these studies have
been made in series of homologous compounds and the mod-
els obtained are expressed in terms of hydrophobic, steric
and electronic parameters.

Fig. 2ashows the relationships between the retention data
(kor logk) obtained using a 0.04 M Brij-35 mobile phase and
the binding affinities to H1-receptor of different CNS drugs.
Both plots provide the same information from a qualitative
point of view: all the compounds with logk values ranged
between 1.7 and 2.2 (50≤ k ≤ 150) present the lowest
Ki values which implies that these compounds are going
to form the most stable ligand–H1-receptor complexes. For
those compounds with logk values lower than 1.7 (k ≤ 50)
and over 2.2 (k > 150),Ki drastically increases indicating a
loss of affinity to the histaminic receptor. Nevertheless, the
reduction of the strength of binding seems to be less drastic



194 C. Quiñones-Torrelo et al. / Journal of Chromatography B, 801 (2004) 185–198

Table 3
Statistical analysis and predictive features of the QRAR models for H1-histamine receptor:Ki(H1) (nM) = exp(a + b∗k) + exp(c∗k)

[Brij-35] (M) a ± asymptotic SE b ± asymptotic SE c ± asymptotic SE R2 (Radj) SE DW

0.02 7.27± 0.14 −0.040± 0.005 0.012± 0.002 0.90 (0.89) 45.9 2.0
0.04 7.33± 0.10 −0.078± 0.006 0.024± 0.001 0.94 (0.94) 34.8 2.7
0.06 7.40± 0.12 −0.110± 0.010 0.040± 0.003 0.93 (0.92) 38.7 2.2

k: retention data of compounds obtained using Brij-35 mobile phases, asymptotic SE: asymptotic 95% confidence interval/2,(Radj)
2 = R2 adjusted for

degrees of freedom; SE: standard error of the estimate; DW: Durbin–Watson statistic.

for highly retained compounds. Similar graphical models
were obtained from retention data using 0.02 and 0.06 M
Brij-35 mobile phases but obviously with different intervals
of logk.

In order to obtain quantitative information, two different
models were assayed. TheKi /logk relationship can be fitted
to a second order polynomial modelEq. (1), whereas the
Ki /k relationship can be fitted to a double exponential model
Eq. (2):

Ki = a + b∗(logk) + c∗(logk)2 (1)

Ki = exp(a + b∗k) + exp(c∗k) (2)

The first relationship agrees with the type of dependence
that has been proved to be usual in previous QRAR stud-
ies for pharmacokinetics and biological responses of differ-
ent groups of drugs[12]. The second model implies that
compounds with retention within a certain range can show
similar binding affinity to receptor. On the other hand, com-
pounds with retention values outside of the described reten-
tion range, show low binding affinity to receptor, and these
diminution of the binding affinity to the receptor is different
for the lowest and highest retained compounds. As can be
observed inFig. 2adata were best fitted to the exponential
model.

Table 3 summarizes the statistical analysis of the pro-
posed models. In all cases statistically significant relation-
ships betweenKi andk values at the 95% confidence level
were found, (the asymptotic 95% confidence interval does
not contain the value 0). TheR2 statistic values indicate that
the models, as fitted, explain between 90 and 94% of the
variability in Ki data when different Brij-35 mobile phases
are used. The Durbin–Watson statistic is greater than 1.4
implying a lack of autocorrelation in the residuals. The stan-
dard error of the estimate shows the standard deviation of
the residuals to be between 35 (for 0.04 M Brij-35) and 46
(for 0.02 M Brij-35). These values can be used to construct
the prediction limits for new observations.

The predictive ability of the model obtained using
0.04 M Brij-35 mobile phase was evaluated in term of
cross-validated data: RMSEC= 33.0, RMSECV= 105.9
and RMSECVi= 39.0. As can be checked, the RMSECV is
greater than RMSECVi value, indicating that some cautions
must be taken with extrapolated data.Fig. 2b, shows the
predicted (fitted and cross-validated) versus actual activity
for the available data.

Table 4contains the predicted binding affinity values for
other CNS drugs with binding affinity data not found in
literature but with proven therapeutic effect.

3.2. Retention–activity onα1-noradrenergic receptor
relationships

In order to evaluate the affinity to the�1-adrenoreceptor
class of CNS drugs, different binding assays have been
reported in which the labeled�1-antagonist WB-4101
(2-([2′,6′-dimethoxy]-phenoxyethylamino)-methylbenzodi-
oxan) acts as radioligand. The binding is saturable, withKD
value of 0.48 nM[21].

Requirements for high�1-adrenoreceptor affinity appear
to be a positive charge and appropriate bulk/lipophilicity at
opposite sides of this charge[31]. Then, the presence of the
cyclic structure and the amino group, which provides the
positive charge at physiological pH, is very important for the
�1-receptor activity. A wide variety of compounds present

Table 4
Predicted values of binding affinity to H1-receptor in rat brain using
0.04 M Brij-35 mobile phase

CNS drug logk Ki (nM) (95%
confidence limits)

Tricyclic antidepressants
Amoxapine 1.63 58± 19
Loxapine 1.86 11± 4
Melitracen 1.97 10± 2
Quinupramine 1.62 63± 20
Trimipramine 1.86 11± 4

Phenothiazines
Pericyazine 1.60 72± 21
Methotrimeprazine 1.89 10± 3
Thioproperazine 1.71 32± 13
Chlorprothixene 2.21 46± 16
Ethopromazine 1.98 10± 3
Pimozide 2.19 38± 13
Prochlorperazine 2.31 123± 52

Antihistamines
Doxylamine 1.39 229± 33
Hydroxyzine 1.60 72± 21
Orphenadrine 2.05 14± 3
Oxatomide 1.82 14± 6
Clemastine 2.22 50± 18
Cyclizine 1.96 10± 2
Cinnarizine 2.26 73± 28
Chloropyramine 1.86 11± 4
Ketotifen 1.55 77± 22
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Fig. 3. (a) �1-receptor binding affinity vs. andk relationship. (b) Validation plots for QRAR model: predicted vs. actual values. Fitted (O) and
cross-validated (+) results are shown.

Table 5
Statistical analysis and predictive features of the QRAR models for�1-noradrenergic receptor:Ki(�1) (nM) = exp(a + b∗k) + exp(c∗k)

[Brij-35] (M) a ± asymptotic SE b ± asymptotic SE c ± asymptotic SE R2 (Radj) SE DW

0.02 10.0± 1.7 −0.08 ± 0.03 0.0101± 0.0015 0.75 (0.70) 22.1 1.5
0.04 7.2± 0.5 −0.084± 0.017 0.018± 0.001 0.86 (0.84) 16.3 2.2
0.06 8.65± 1.10 −0.20 ± 0.06 0.034± 0.004 0.72 (0.66) 23.4 1.6

See footnotes ofTable 3.

these structural features and all of them are going to show
antagonist activity on�1-adrenergic receptors.

Among the drugs studied, the tricyclic antidepressants and
the antipsychotic drugs display substantial potency in com-
peting for the radioligand binding[22,23]. Regarding to anti-
histamines drugs, the�1-adrenoreceptor-antagonist activity
seems to be limited to the phenothiazine derivatives (i.e.
promethazine)[32].

There are different QSAR studies reported in which bind-
ing affinity for �1-adrenoreceptor is predicted. As could be
expected, the resulting models provide a significant corre-
lation of drugs electronic, steric and hydrophobic parame-
ters with the biological affinities. These studies are based
on computational chemistry and molecular modeling proce-
dures[31,33,34].

We also studied the ability of the exponential QRAR
model proposed (2) in explaining drug affinity at the nora-
drenergic receptor. As can be observed inFig. 3a, the expo-
nential model obtained using 0.04 M Brij-35 retention data
was adequate. Compounds with k values ranging between
50 and 180 form the most stable antagonist–receptor com-
plexes.Table 5contains the results of the statistical analysis
and the predictive features of the QRAR models proposed.
The results indicate that there are statistically significant re-
lationships at the 95% confidence level. Coefficients are also
statistically significant at the same confidence level.

Better statistically model was obtained using 0.04 M
Brij-35 retention data. TheR2 statistic value indicates that
the exponential model for 0.04 M Brij-35 mobile phase ex-
plains 86% of the variability in�1-receptor binding affinity

data. The standard error of the estimate is 16.3. This value
can be used to construct the prediction limits for new obser-
vations. In all cases, there is not any significant correlation
in the residuals (DW> 1.4).

Regarding to the model’s predictive ability, the calculated
cross-validation statistics indicates that extrapolated data
must be carefully considered (using Brij-35 0.04 M mobile
phase, the cross-validation errors were: RMSEC= 14.3,
RMSECV = 18.9 and RMSECVi= 17.3). Fig. 3b con-
tains the predicted (fitted and cross-validated) versus actual
activity plots. Models could not explain the binding affin-
ity of promethazine (ki = 55± 6 nM) because retention of
compound is in the zone of the greatest variability.Table 6
contains the predicted values of�1-receptor binding affinity

Table 6
Predicted values of binding affinity to�1-receptor in rat brain using
0.04 M Brij-35 mobile phase

CNS drug logk Ki (nM) (95% confidence limits)

Tricyclic antidepressants
Amoxapine 1.63 39± 20
Dosulepine 1.74 16± 13
Maprotiline 1.47 113± 25
Quinupramine 1.62 42± 20

Phenothiazines
Pericyazine 1.60 110± 24
Thioproperazine 1.71 21± 15
Chlorprothixene 2.21 20± 10
Prochlorperazine 2.31 44± 27
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Fig. 4. 5-HT2-receptor binding affinity vs.k relationships: (a) rat brain, (b) human brain. Fitted (O) and cross-validated (+) results are shown.

for different CNS drugs using exponential model from the
experimental retention values in BMC.

3.3. Retention–activity on 5-HT2 serotonergic receptor
(S2) relationships

The compound ketanserin is a quinazoline derivative with
serotonin antagonist properties. Due to its marked selectiv-
ity and advantageous binding properties (KD = 0.42 nM in
Tris–HCl buffer), its corresponding [3H] derivative is the
most suitable of radioligands available so far for investiga-
tion of S2 receptor binding sites[24].

A structure–activity relationships study of the S2 receptor
antagonist is a difficult task because of the abundance and
structural diversity of such compounds although, among the
families of compounds considered in this work few activity
data were available. There are many published works about
structure–activity of different S2 antagonist compounds fam-
ilies [35–38]. One of the most important structural require-
ments to explain the activity of all the S2 receptor antagonists
seems to be one nitrogen atom located at 6.30 and 5.17 Å
from two aromatic rings[39]. This structural requirement is
also shared by the pharmacophore of H1 antihistamine and

�1 noradrenergic receptors, which explain that the serotonin
antagonists also interact with these receptor-binding sites.

Among the compounds considered in this work, phenothi-
azines, and the tricyclic derivatives (mainly those com-
pounds with a carbon–carbon double bond connecting the
middle ring with the side chain) such as antidepressants and
the antihistamines ketotifen and cyproheptadine are moder-
ate to potent inhibitors of [3H]-ketanserin binding, whereas
other antihistamines[32] and compounds of other chemical
classes are inactive.

Fig. 4 shows the relationships between the compounds
retention data (using 0.04 M Brij-35 mobile phase) and their
binding affinities to 5-HT2-receptor measured in rat (Fig. 4a)
and human (Fig. 4b) brain. From a qualitative point of view,
and according to the plots, those compounds withk > 60
show the highest affinity to both rat and human receptor.
These results agree with the investigations reported[29].

Table 7a and 7bcontains the corresponding statistical
analysis for rat and human QRAR models respectively. In
both cases, models and coefficients are statistically signif-
icant at the 95% confidence level. TheR2 statistic value
indicates that the models, as fitted, explain between 72 and
88% of the variability inKi data. The study of the models
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Table 7
Statistical analysis and predictive features of the QRAR models for 5-HT2 serotonergic receptor (S2): Ki(S2) (nM) = exp(a + b∗k) + exp(c∗k)

[Brij-35] (M) a ± asymptotic SE b ± asymptotic SE c ± asymptotic SE R2 (Radj) SE DW

(a) Rat brain
0.02 7.7± 1.3 −0.05 ± 0.02 0.006± 0.002 0.75 (0.71) 10.7 2.0
0.04 6.1± 0.5 −0.069± 0.018 0.009± 0.005 0.77 (0.73) 10.3 2.7
0.06 6.5± 0.7 −0.12 ± 0.04 0.018± 0.007 0.75 (0.71) 10.7 2.3

(b) Human brain
0.02 6.8± 0.6 −0.024± 0.009 0.008± 0.006 0.72 (0.68) 40.0 2.2
0.04 13± 2 −0.26 ± 0.08 0.014± 0.005 0.88 (0.86) 26.8 1.42
0.06 8.4± 1.4 −0.14 ± 0.06 0.026± 0.013 0.73 (0.69) 39.7 2.2

See footnotes ofTable 3.

Table 8
Predicted values of binding affinity to S2-receptor in rat and human brain
from the exponential models obtained using 0.04 M Brij-35 mobile phase

CNS drug logk Ki (nM)

Rat brain (95%
confidence limits)

Human brain (95%
confidence limits)

Tricyclic antidepressants
Amoxapine 1.63 25± 14 a

Melitracen 1.97 3± 3 4 ± 3
Quinupramine 1.62 27± 14 7.0± 10

Phenothiazines
Pericyazine 1.60 30± 14 10± 15
Methotrimeprazine 1.89 4± 4 3 ± 2
Thioproperazine 1.71 15± 6 2 ± 2
Chlorprothixene 2.21 4± 7 9 ± 14
Ethopromazine 1.98 3± 2 4 ± 3

a Included in the model.

predictive ability concludes that extrapolated data must be
prudently valuated (seeTable 7a and 7b). Using 0.04 M
Brij-35 mobile phase, the cross-validation errors were:
RMSEC= 9.3, RMSECV= 17.4 and RMSECVi= 12.0
for the rat model and RMSEC= 22.8, RMSECV= 39.1
and RMSECVi = 25.3 for the human one. The use of
0.02 or 0.06 M Brij-35 mobile phases did not improve the
results obtained using 0.04 M Brij-35 retention data (see
Table 7a and 7b). Fig. 4c and dcontains the predicted (fit-
ted and cross-validated) versus actual activity plots.Table 8
shows the binding affinity predicted values using the QRAR
exponential model for other CNS drugs.

4. Conclusions

The BMC methodology proposed is probably one of
the most accessible, economical, robust and stable of the
HPLC-based methodologies employed in QRAR analysis.
The use of only one descriptor (the retention factor,k) is
one of the most important advantages with regard to the
classical QSAR studies.

The QRAR models obtained must be carefully used: the
tested compounds, in the same way than the ones used in
the model development, must present the same molecular
and stereochemical features than the basic pharmacophores

of the corresponding monoamine receptors. Taking into ac-
count these considerations, it has been shown that the BMC
retention of a compound is able to describe the influence
of hydrophobicity on the affinity of certain families of CNS
drugs to monoamine receptors. This is presumably due to
the fact that retention depends on the same interactions
which condition drug–receptor binding. In this case, as all
the compounds that comprise the set studied present similar
electronic characteristics, differences observed in retention
are explained by means of steric and, overall, hydropho-
bic contributions. This fact is going to allow us to relate
drug–receptor binding to hydrophobicity.

The exponential models developed seems to be efficient
to explain psychotherapeutic drugs binding affinity, overall
for highly hydrophobic compounds. All those compounds
with 50 < k < 150 show the highest affinity for all of the
monoamine receptors studied (H1-histaminic,�1-adrenergic
and 5-HT2 serotonergic). However small changes in the re-
tention for the less hydrophobic compounds seem to affect
more to drug–receptor complex stability than changes in the
retention for the highly hydrophobic compounds. The esti-
mation of the monoamine receptor binding affinity of other
drugs is going to provide us useful qualitative information
about the relative potency of these compounds and their pos-
sible side effects.

Similar QRAR models to the ones described in this work
were assayed for dopamine receptor. Nevertheless, there
were not enough available data in order to statistically vali-
date these models.
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